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BACKGROUND 
Balance is a central and complex aspect of human movement - it requires input from multiple 
sensory systems, musculoskeletal responses and coordination by the brain and spinal cord.  

People desire “good balance” for obvious reasons including reduced risk of falling and improved 
athletic and day-to-day physical performance. Balance capabilities are not static nor inherent. 
They can be improved through exercise and can be adversely impacted by a variety of different 
underlying physical ailments, including:  

• Musculoskeletal injuries or deficits  
• Brain injuries & neurological disorders  
• Sensory disorders  

 
The testing of balance ability, then, is an important evaluation tool that can guide health 
improvement and medical interventions when necessary. Clinical testing by health professionals 
has been used in various forms for more than a century. Common practice is dominated by what 
are typically referred to as ‘functional tests of balance’. Examples, listed in Appendix A, 
include the Romberg Test, the BESS Test, and the TUG (Timed Up & Go) Test. 
 
Functional tests are useful - particularly for identifying severe balance abnormalities. They have 
significant drawbacks, however, that include requirements for skilled clinicians, limited sensitivity 
and specificity of measurement, and test duration. These drawbacks limit the ability to 
differentiate among different balance issues or to capture small differences in balance ability [1].  
 
More recently, assessment approaches based on the capture of high-bandwidth time series 
data have come to the forefront. These methods, originally developed in the research 
community, are entering mainstream use, fueled by the rapidly expanding availability of 
computing technology and data.  
 
In these time series based approaches, the goal is to capture the complexity of a person’s 
response to some form of balance challenge through sensor data. Data is collected 
continuously over a prescribed period of time - typically thousands of individual measurements 
per second or more from multiple sensors. Example sensing approaches include:  

• Video capture systems  
• Body-attached inertial sensors  
• In-shoe pressure sensitive inserts  
• Force plates 

  
Differentiating movement features or patterns, then, are extracted from the collected kinetic or 
kinematic data which can be used directly or in computational models to characterize a person’s 
balance.  
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This type of balance assessment offers many advantages over traditional functional tests, the 
most important being the ability to capture fine-grained objective data and to scale testing to 
population scale. The following sections of this paper explore more details of balance 
assessment based on time series data analysis.  

CONSIDERATIONS IN TIME SERIES BASED 
ASSESSMENTS  
While examining different potential approaches to assessment, there are several relevant 
considerations, including: 

• Feasibility: How easy is it to assess people? What is required in terms of time, 
supervision, clinical expertise or apparatus? How challenging are the instructions the 
subject must follow?  

• Scale: Can an assessment be consistently executed at sufficient population scale to 
reap the benefits of “big data” analysis?  

• Reliability: How well does a set of measurements differentiate people from each other?  
• Usefulness: Are the measurements useful as predictors of health conditions of interest? 

Do they work for many different health conditions? Do the measurements lead to more 
effective treatments?  

 
Passive, wearable-based approaches (e.g. phone in pocket, wristband or ring-based sensors 
worn over extended periods of time) are appealing in their ability to do data collection in the 
background. While they can provide some insights into balance, these passive approaches 
provide an insufficient foundation for scalable balance assessment. Limitations include:  

• Required provisioning of wearable devices  
• Available scope of captured sensor data  
• Comparability across device types, manufacturers, environmental conditions and 

placement on individuals 
 
Balance assessment quality benefits from an active test, where the subject follows prescribed 
movements in a set period of time. The movements can be simple, but they in some way create 
a repeatable balance response that produces reliable metrics with sufficient granularity that they 
can be usable in prediction models. Of the various approaches to capturing time series data in 
an active test, force plate-based approaches currently offer the best path to scalable and 
information rich balance assessment.  
 
Balance assessments on a force plate can be executed in one or two minutes, with minimal or 
no supervision on a simple apparatus while still producing information-rich signal data. They can 
be used very broadly across the population. The remainder of this document, then, explores 
details of time series-based balance assessment using a force plate. Appendix B provides some 
discussion of alternative sensor approaches.  
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FORCE-PLATE BASED BALANCE TESTING  
In a balance assessment, force plates measure ground reaction forces of an upright person 
attempting to balance [2]. The figures below show the basic physics.  
 

Figure 1 

The force plate resolves the sensor data into time series representations of resultant vertical 
force (Fz) and center of pressure measures in the plane of the plate (COPx and COPy) 
representing medial-lateral and anterior-posterior directions respectively.  

For assessment, a person executes a protocol (a guided sequence of timed movements) and 
the time series data is captured. This protocol can consist of sequences composed with basic 
elements (with variable timing) such as the following:  

• Stand still on both feet shoulder width apart  
• Raise/lower one foot  

Protocols can also specify variations such as:  

• Eyes closed vs. open  
• Footwear vs. barefoot  

3 Balance Assessment Overview



Test protocols can be adapted to the abilities of the population being assessed and to the goals 
of the assessment. In general, however, minimizing variations in protocol or aspects of protocol 
that reduce participant compliance is important to achieving the maximum scale of comparable 
test results. Therefore, the following minimal set is preferred:  

• Alternating single leg raises with shoes on  
• Two legs with shoes on (for individuals incapable of balancing on a single leg)  

 
After a test protocol is executed, analysis starts with transforming the millions of individual Fz, 
COPx, & COPy measurements into a set of distinguishing features and using those features to 
characterize the balance ability of the subject.  

 
EXTRACTING BIOMARKERS FROM THE DATA  
 
Here we use the terms biomarker and feature almost interchangeably to describe metrics 
extracted from the time series data for purposes of analysis. Feature is the term used 
generically in machine learning contexts and biomarker connotes that the metric reflects a 
person’s health state in some manner. 

FEATURES FROM TIME SERIES DATA  
 
Figure 2 below shows the traces for a section of a sample balance test where the user executed 
a protocol where they started on two feet, raised their left foot and then lowered that foot to 
restore a two-foot balance position.  

Figure 2 

Many choices could be made as to how to extract features from the three signals. For example, 
we could choose to first isolate different comparable sections of the test like the on-two-feet 
periods, the on-one-foot period and the transitions (2 foot to 1 foot transition and the 1 foot to 2 
foot). For these three signals, there is a substantial amount of information available for 
evaluation of the person’s balance response.  
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Once segments in the time series data are identified, there are a variety of methods of 
extracting biomarkers from the signal data in those segments, including: 

• Biomechanics/physics-based calculations  
• Signal analysis oriented calculations  
• Unsupervised machine learning techniques  
• Supervised machine learning techniques  

BIOMECHANICS/PHYSICS-BASED CALCULATIONS  
 
The most common approach to biomarker extraction from time series movement data has been 
to calculate quantities that are based on the physics of the movement being tested (e.g. 
averages or peak values of displacements, velocities, accelerations, forces). In the case of 
balance testing examples include:  

• Average velocity measures for the center of pressure (or sway velocity)  
• Resultant magnitude  
• Anterior-posterior  
• Medial-lateral  

• Displacement measures  
• Transition time measures  

 
SIGNAL ANALYSIS ORIENTED CALCULATIONS  
 
Additional biomarkers can be extracted by applying signal processing techniques to the data 
that look for things like information content, spectral properties, or temporal correlations. 
Examples of quantities that could be used for biomarkers include: 

• Entropy measures (e.g. multi-scale, multivariable sample entropy)  
• Spectral energy measures (energy in different bands of the frequency spectrum) 
• Phase relationship measures (e.g. vector coding, continuous relative phase)  

 
UNSUPERVISED MACHINE LEARNING  
 
A variety of unsupervised machine learning techniques can also be used to generate high 
quality biomarkers. Example approaches include:  

• Direct extraction of biomarkers from patterns present in the raw signal data using 
autoencoders and temporal convolutional neural networks.  

• Dimension reduction and optimization techniques applied to sets of features produced 
through other means (e.g. physics and signal processing based calculations) to produce 
derived biomarkers optimized for reliability and independence.  

• Clustering techniques to identify significant categorical groups based on sets of features 
produced through other means.  

SUPERVISED MACHINE LEARNING  
Where labeled data (i.e. ground truth information for conditions or performance capabilities) is 
available, supervised machine learning techniques can be used to produce biomarkers as the 
output of trained prediction models. Potential sources of label data include:  
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• Recorded injury or fall events  
• Other test or survey results (e.g. risk or condition assessment surveys, functional tests,  

performance tests)  
• Insurance claims data  
• Occupational availability & productivity data  

 
Example types of biomarkers that can be produced from trained models of this type include: 

• Injury risk scores  
• Fall risk scores  
• Athletic performance scores  
• Predicted values for other tests  

 
SYMMETRY BIOMARKERS  
 
In many balance testing protocols, separate left and right side sections are assessed - enabling 
additional evaluations of symmetry for extracted features. 

 
TRIALS & SCANS 
 
In order to improve the reliability of measurements, most test protocols involve some repetition 
and error checking of individual trials in order to complete an individual scan or assessment. 
Repetition is used in two ways:  

• Automated exclusion of ‘invalid’ trials: ‘Bad’ tests can occur due to non-compliance with 
a specified test protocol or other issues such as inadvertent contact with the plate. Test 
software can detect many of these events and can direct a repeat of the test.  

• Averaging of metrics across successful trials: Incorporating a single repetition the 
movement and averaging extracted metrics can significantly improve measurement 
reliability.  

 
USING BIOMARKERS TO ASSESS BALANCE 
CAPABILITIES 
 
Clearly, a large quantity of information can be extracted from a simple force plate-based balance 
assessment through many distinct biomarkers. Patterns in this data have been shown to reveal 
insights into many health concerns related to balance, including:  

• Falls  
• MSK injuries  
• Sensory issues such as vestibular disorders  
• Traumatic brain injury  
• Chronic neurological disorders such as Parkinson's Disease  
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Many individual biomarkers have been the subject of clinical research studies, e.g.:  

• Lower sway velocities have been associated with better health. Studies have shown  
higher sway velocities to be correlated with increased fall risk and post-concussion  
symptoms [3]. 

• Higher entropy values have been associated with better health. Measurement of the  
‘complexity’ of dynamic physiological signals is an increasingly important assessment 
tool [4-6]. Higher complexity implies a more well adapted balance control capability. The 
intuition is that higher complexity of response implies better ability to make fine 
adjustments at different timescales in order to maintain stability in the face of 
unpredictable destabilizing perturbations [7].  

• Vector coding is frequently used to represent gait data. Vectors are created between 
data points on relative motion, or angle-angle, plots; these vectors can then be used to 
assess and analyze coordination [8].  

• Continuous Relative Phase is an alternative measure of coordination between two joints 
or segments that is often employed in gait analysis. In addition to assessments of 
coordination while walking or running, it has been used to differentiate between healthy 
individuals and those with movement or neurological disorders [9,10]. 

 
Beyond research contexts, however, clinical use of balance testing-based biomarkers have 
been limited - in the scale of testing, the number of biomarkers, and the diagnostic uses. Where 
balance testing has been deployed, a single biomarker (most often sway velocity) or a small set 
of biomarkers are used. The use of an expanded set of biomarkers and large scale testing and 
data collection enable enormous improvements in balance diagnostic capabilities.  
 
Balance is a multifaceted response that relies on neurological, sensory, and musculoskeletal 
interactions, and it cannot be easily characterized through a small number of biomarkers. To 
achieve a better understanding we need:  

• Sufficient feature granularity to expose important differences among individuals and to 
provide a path for explaining the sources of those differences.  

• Sufficient cohort data volume to provide a strong basis for comparison.  
• Application of machine learning techniques to pragmatically map patterns in balance  

response data to practical metrics, e.g.:  
• Fall risk scores  
• Injury risk scores  
• Treatment progress measures  

 
SUMMARY  
 
Balance assessment is a rapidly developing practice with implications for a wide variety of 
fields, including athletic training, rehabilitation, healthy aging, and clinical diagnostics and 
treatment. Recent advancements in measurement technology and analytic techniques have 
vastly broadened the realm of possibilities for collecting and evaluating balance data. As best  
practices emerge, there is increasing potential for individualized balance assessment leading to 
tailored guidance for performance improvement, injury prevention, and targeted therapy and 
rehabilitation.  
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APPENDIX A: FUNCTIONAL TESTS OF BALANCE  
A variety of ‘functional tests’ have been used by health professionals to assess an individual’s 
postural control. These tests generally specify a basic balance related movement and use a 
simple measurement (such as a time or a distance) or a subjective score assessed by a 
clinician. Examples include:  

• Romberg Test: evaluates the impact of loss of vision (via closed eyes) on balance in a 
standing position. In this commonly-used test, a patient stands with their feet close 
together, arms near their sides, and eyes open while the administrator of the test 
monitors and notes the degree and position of any swaying. The patient then closes their 
eyes, and the administrator again notes the degree and position of swaying, which is 
compared with that observed during the eyes-open phase. A patient demonstrating 
significantly greater sway or imbalance during the eyes-closed phase of the test is 
considered to have tested positive for Romberg’s sign [11].  

• Functional Reach Test: measures the distance beyond arm length a person can reach 
while maintaining a fixed standing position [12].  

• Berg Balance Scale: a clinician-scored assessment of 14 functional activities, including 
sitting and standing [13,14].  

• Performance-Oriented Mobility Assessment (POMA): a clinician-scored assessment of 
balance across 14 items and gait across 10 items [15].  

• Timed Up and Go Test: measures the duration of a series of sequential functional tasks 
[16]. 

• Star Excursion Test: evaluates ability to stand on one leg while reaching in eight 
directions, separated by 45 degrees each, with the other leg [17,18].  

• BESS: The BESS (Balance Error Scoring System): assesses deviations from three 
different stances on firm and soft surfaces with eyes closed [19,20].  

• BESTest & Mini-BESTest: a clinician-scored test to differentiate balance into 6 underlying 
systems that may constrain balance [21].  

APPENDIX B: TIME SERIES BALANCE ASSESSMENT 
 
As mentioned previously, there are three primary approaches to collecting data for balance 
assessment: video-based motion capture of subject, on-body inertial sensors, and ground 
reaction force measurement. 

VIDEO-BASED MOTION CAPTURE 
 
Video is an increasingly convenient tool for kinematic analysis, as video can potentially be 
captured by subjects with their own phones and no specific expertise. A typical setup for 
accurate, consistent motion capture requires a lab setting with expensive equipment, setup, and 
data processing effort. As camera technology on mobile phones has advanced, more mass 
market approaches to transforming video into 3D representations of human movement are 
starting to be developed [22, 23]. For assessing balance, however, video-based approaches 
have limitations with respect to the precision and scope of what they can measure. Balance 
response involves many small amplitude and high frequency micro-adjustments that cannot be 
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accurately extracted from video in a feasible manner. Video, however, can be a useful 
complementary tool to other approaches in its ability to document movements of the subject 
during testing. 

ON-BODY INERTIAL SENSORS 
Like video technology, accelerometer tech has become commoditized to the point that every 
smartphone contains an IMU (inertial measurement unit) that can accurately measure 6 degrees 
of freedom. However, because balance response involves complex small movements of all 
parts of the body, accurate assessments would require IMUs placed at many separate locations 
on the body (typical rigid body models of the human body include 15 distinct segments). The 
challenges posed in instrumentation, data collection, and very high dimensional data analysis 
limit the practicality of this approach. Like video, limited use of accelerometers can be 
complementary to other analyses. 

GROUND REACTION FORCES 
A third approach involves measuring the force exerted onto the ground by the subject while 
performing a balance movement. Understanding how a subject adjusts the force they exert on 
the ground in order to maintain balance provides the basis of analysis. The primary method of 
data collection is the use of a force plate. A force plate is basically a high-tech scale that can 
dynamically measure vertical force and how that force moves on the plane of the plate surface 
at high resolution.  

Pressure sensing shoe inserts can also be used to characterize force between the feet and 
ground. Inserts can provide some unique insights (e.g. pressure distribution across the sole of 
the foot), but present challenges in terms of reliable metric comparisons across different 
subjects as well as testing pragmatic difficulties at scale (e.g. foot geometry variation, alignment 
of insert within the shoe).  
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